(6) NSKHPS angular contact thrust ball bearings for ball screw support

1. Features

This is highly rigid and accurate ball screw support bearing often used for the machine tools driving mechanism.

NSKHPS:Reliability has been improved by focusing on material cleanliness, which has the biggest impact on bearing life, by employing NSK's proprietary material evaluation technology. The dynamic load rating has been improved by 5% compared with that of conventional bearings.

The NSKTAC C Series features high axial rigidity and is suitable for machine tool feeding mechanisms, while the NSKTAC 03 Series with its high axial load capacity is well suited for the support of large ball screws in high-load drive applications such as electric injection molding machines. With these series users can achieve much lower torgue and higher accuracy than with roller bearings.

(a) High axial rigidity

- The axial rigidity is high because of a higher contact angle of 60°
- (b) Low starting torque
- Compared with tapered roller bearings or cylindrical roller bearings, this type has lower starting torque; so smoother rotation is possible with driving force.

(c) Easy Installation

B415

The clearance in each indivisual bearing in a combination is adjusted to obtain the optimum preload. With universal combination bearings (combination symbol SU), a specific preload is obtained when used with others having the same bearing number in any combination (DB, DF, and others).

(d) Structural simplicity

Since this type can sustain both axial and radial loads, the surrounding structure is simpler and more compact than when using a combination of radial and thrust bearings. (e) Easy handling

Since the Inner and outer rings are inseparable, handling is easy.

Table 2 Comparison with other types of bearings

Bearing type	Bearing rigidity (See Fig. 1)	Starting torque	Preload adjustment	Installation structure
Ball screw support bearings	High	Low	Not required	Simple
Combined angular contact ball bearing	Low	Low	Not required	Simple
Tapered roller bearing	Low	High	Complicated	Simple
Thrust ball bearing and radial bearing	High	Low	Complicated	Complicated
Thrust cylindrical roller bearing and radial bearing	Extremely high	Extremely high	Complicated	Complicated

Note: Consult NSK when you use these bearings other than the purpose of ball screw support.

NSK

2. Bearing combinations

Angular contact thrust ball bearings for ball screw support are generally used in two or more rows with preload applied.

Universal Combination Bearings

Ball screw support bearings

NSK manufactures universal combination bearings which have been controlled to have the same amount of stand-out (offset) on their front and back faces. That way, for bearings with the same bearing number, users will achieve the specified amount for each standard preload, regardless of which combination they chose. Each universal combination bearing comes with a V-shaped mark on the surface of the outer ring to simplify identification of the correct direction when mounting and to ensure that the correct combination is achieved. The V-shaped mark points to the direction of the axial load that the inner ring supports (contact angle).

Combination Mark and Matching Method for Universal Combination Bearings

Accessories

3. Permissible Axial Load for Angular Contact Ball Bearings

NSK has defined the limiting static axial load as the smaller of the two values listed below:

- (1) Limiting axial load that produces shoulder override The limiting load at which the contact ellipse generated between the ball and the raceway overrides the shoulder of the raceway groove (Fig. 2)
- (2) Limiting axial load in terms of surface pressure The limiting load at which the contact stress at the center of the contact area between the ball and the raceway groove reaches a level that leaves an indentation as defined in the basic static load rating (Fig. 3)

To maintain optimal bearing performance, NSK has defined permissible static axial load values by applying a safety factor to the limiting axial load based on many years of experience.

The formula for calculating the basic static axial load rating C_{aa} does not take the shoulder height of the raceway groove into account. Therefore, in some cases the C_{aa} value may exceed the limiting axial load that produces shoulder override.

In such cases, the maximum load that the bearing can sustain is lower than the C_{oa} value, making the C_{oa} value unsuitable (Fig. 4). Therefore, instead of C_{oa} values, we have listed limiting axial load values in the bearing tables where necessary, particularly for angular contact thrust ball bearings as they are usually used to support heavy axial loads.

4. Rolling contact fatigue life

The relationship between basic load rating, bearing load, and basic rating life for the rolling bearing is presented in the following formula.

$$L_{\rm h}=\frac{10^6}{60n}\Big(\frac{C_{\rm a}}{P}\Big)^3$$

Where, L_{h} : Basic rating life (h)

- C_a: Basic dynamic load rating (N)
- P: Dynamic equivalent load (N)
- *n* : Rotational speed (min⁻¹)

See the right table for dynamic equivalent load in each combination.

Fig. 2 Ride-over limit axial load

Deep impression occurs

Fig. 3 Contact pressure limit axial load

Fig. 4 C_{oa} and limit axial load

Dyn	an	nic eo	quiva	lent	load	P _a =	= XF _r	+ YF	a		
Bearing configu	uration /	Du	plex		Triple	×	Qu	Quadruplet			
Notice of the Day list person	600	DF	DT	DF	Đ	DTD	DFT	DFF	DFT		
e = 2.17		One row	Two rows	One row	Two rows	Three rows	One row	Two rows	Three rows		
y = 2.17	Χ	1.9	Ι	1.43	2.33	-	1.17	1.9	2.53		
Γ _a /Γ _r ≧θ	Y	0.55	-	0.77	0.35	-	0.89	0.55	0.26		
FIESO	X	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		
I _a /Γ _Γ ∕e	Y	1	1	1	1	1	1	1	1		

Ball screw support bearings

5. Fits

Recommended interference values for standard operating conditions of ball screws are listed in Tables 3. When using angular contact thrust ball bearings for high-load drive ball screw support, in cases where a single end is supported and moment loads are high, it is advisable to increase shaft interference, for example by choosing k5 etc. as required.

Table 3	Tolerances for	or Shaft a	and Housing	g Bore	Diameters	Unit: µm
---------	----------------	------------	-------------	--------	-----------	----------

Shaft Oute Housing Bo (m	r Diameter, re Diameter m)	Angular bearing	Toleran contact th gs for high application	ice of sha nrust ball i-rigidity is	ft outer d Angular bearings	iameter contact tl for high-l applicatior	hrust ball oad drive is	Tolerar bo	ice of ł rediame	nousing eter
Over	Incl.		Min.	Max.		Min.	Max.		Min.	Max.
10	18		-8	0		-4	4		-	-
18	30		-9	0		-4.5	4.5		-	-
30	50		-10	0		-5.5	5.5		0	16
50	80		-13	0		-6.5	6.5		0	19
80	120	h5	-	-	js5	-7.5	7.5	H6	0	22
120	180		-	-	·	-9.0	9.0		0	25
180	250		-	-	1	-	-		0	29
250	315		-	-		-	-		0	32
315	400		-	-		-	-		0	36

6. Bearing Accuracy

Table 4 to 6 shows accuracy for angular contact thrust ball bearings for ball screw support.

Table 4 Tolerances for angular contact thrust ball bearings NSKTAC C for high-rigidity ball screw support (Class PN7C ") Unit: µm

Nomin (or outer) (m	al Bore diameter) 1m)	Single Pla Bore Diame Ad	ane Mean ter Deviation mp	Deviation Bore D A	of Single iameter ds	Single Pla Outside Diam AD	Single Plane Mean Outside Diameter Deviation <u>ADmp</u>		Deviation of Single Outside Diameter <u>ADs</u>		of Single ng Width B <i>s</i>	Inner ring (Outer Ring) Face Runout with Raceway <i>Sia</i> (<i>Sea</i>)
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	Max.
10	18	0	-4	0	-4	-	-	-	-	0	-120	2.5
18	30	0	-5	0	-5	-	-	-	-	0	-120	2.5
30	50	0	-6	0	-6	0	-6	0	-6	0	-120	2.5
50	80	0	-7	0	-7	0	-7	0	-7	0	-150	2.5
80	120	-	-	-	-	0	-8	0	-8	-	-	2.5

Note: 1. NSK specification

Table 5 Tolerances for angular contact thrust ball bearings NSKTAC 03 for high-load drive applications ball screw support (Class PN5D ^a) Unit: µm

Nomin (or outer) (m	al Bore diameter) m)	Single Pla Bore Diamet Ad	ane Mean ter Deviation mp	Single Pla Outside Diam AD	ane Mean eter Deviation Imp	Deviation Inner Rir Δι	of Single ng Width B <i>s</i>	Inner ring (Outer Ring) Face Runout with Raceway <i>Sia</i> (<i>Sea</i>)
Over	Incl.	High	Low	High	Low	High	Low	Max.
10	18	0	-5	-	-	0	-80	5
18	30	0	-6	-	-	0	-120	5
30	50	0	-8	0	-7	0	-120	5
50	80	0	-9	0	-9	0	-150	8
80	120	0	-10	0	-10	0	-200	8
120	150	0	-13	0	-11	0	-250	10
150	180	0	-13	0	-13	0	-250	10
180	250	-	-	0	-15	-	-	10
250	315	-	-	0	-18	-	-	11
315	400	-	-	0	-20	-	-	13

Note: 2. NSK specification

Table 6 Tolerances for BSBD Series double-row bearings (Class P2B ⁽³⁾ of BSF and BSN series)

Nomin Diamet	al Bore er (mm)	Single Pla Bore Diame Ad	ane Mean ter Deviation Imp	Single Pla Outside Diam ΔD	ane Mean eter Deviation mp	Inner Ring Face Runout with Raceway <i>Sia</i>	Radial Runout of Inner Ring <i>Kia</i>	Width T	olerance
Over	Incl.	High	Low	High	Low	Max.	Max.	High	Low
10	18	0	-5	0	-10	1.5	1.5	0	-250
18	30	0	-5	0	-10	2.5	2.5	0	-250
30	50	0	-5	0	-10	2.5	2.5	0	-250
50	80	0	-8	0	-15	2.5	2.5	0	-250
Over 10 18 30 50	Incl. 18 30 50 80	High 0 0 0 0	Low -5 -5 -5 -8	High 0 0 0 0	Low -10 -10 -10 -15	Max. 1.5 2.5 2.5 2.5	Max. 1.5 2.5 2.5 2.5	High O O O O	

Note: 3. NSK specification

Unit: µm

NSK

NSKTAC C Angular Contact Thrust Ball Bearings for Ball Screw Support in High-Rigidity Applications

A larger number of balls and a 60° contact angle provide high axial rigidity and make these bearings ideally suited for machine tool feeding mechanisms.

The "DDG" seals used for the sealed bearings of this series are light-contact seals for high-speed capability; a strong sealing effect is achieved by a labyrinth between the seal lip and the seal groove of the inner ring. This ensures that no foreign particles can get into the bearing and no grease can leak out, thus helping to keep the surrounding area clean. Some bearings from this series are also available as non-contact sealed bearings for even lower torque and lower heat generation.

For ease of handling and increased efficiency, NSKTAC C bearings come prepacked with "WPH" grease that resists high temperatures and is less likely to soften and leak.

NSKTAC 03 Angular Contact Thrust Ball Bearings for Ball Screw Support in High-Load Drive Applications

Optimized internal design has led to a higher limiting axial load. The number of rows may be reduced, contributing to smaller sized devices. We also offer bearings with special bore diameters. That way, bearings with higher load capacity may be employed without any need to modify the shaft diameter, allowing for more compact screw shaft ends.

For the validity of this series for industries except Injection molding machines and machine tools, please ask NSK.

Numbering System of NSKTAC C Angular Contact Thrust Ball Bearings for Ball Screw Support in High-Rigidity Applications

Bearing number example:	30 T/	AC 62	C	SU	H PN7C	
Nominal bore diameter						Accuracy
Bearing type						Preload
Nominal outer diameter						Arrangement
Internal design						Seal

30	Nominal bore diameter	Bore diameter (mm)
TAC	Bearing type	Angular contact thrust ball bearing
62	Nominal outer diameter	Outer diameter (mm)
С	Internal design	Contact angle 60°
	Seal	No symbol: Open type DDG: Contact rubber seal V1V: Non-contact rubber seal
SU	Arrangement	SU: Universal arrangement (single-row)
Н	Preload	H: Heavy preload (standard in the HPS Series)
PN7C	Accuracy	PN7C: NES Class 7C (axial runout equivalent to P2)

Numbering System of NSKTAC 03 Angular Contact Thrust Ball Bearings for Ball Screw Support in High-Load Drive Applications

Bearing number example:	60	TAC	03	D	T85	SU	Μ	PN5D	
Nominal bore diameter			· ——	—					Accuracy
Bearing type									Preload
Dimension series									Arrangement
Internal design									Cage

60	Nominal bore diameter	Bore diameter (mm)
TAC	Bearing type	Angular contact thrust ball bearing
03	Dimension series	02: 02 Series 03: 03 Series
D	Internal design	Contact angle 55°
T85	Cage	T85: Polyamide cage M:Brass Cage
SU	Arrangement	SU: Universal arrangement (single-row)
М	Preload	M: Medium preload EL: Extra light preload
PN5D	Accuracy	PN5D: Standard accuracy (equivalent to ISO Class 5)

NSKHPS is not applicable for TAC160-3 and 180TAC03D.

Ball screw support bearings NSKTAC C series

(Open type)

Bearing	Boundary Dimensions (mm)						ent and F (m	illet Dim m)	ensions	Recommended Grease	Contact	Limiting S (mir	Speeds ⁽²⁾ 1 ⁻¹)	Mass
Numbers	d	D	В	r (Min.)	1 (Min.)	D _b (Max.)	da (Min.)	Da (Max.)	d₀ (Min.)	Quantities (cc)	(degree)	Grease	Oil	(approx.)
15TAC47C	15	47	15	1	0.6	42	19.5	41	19.5	2.2	60	6 900	9 200	0.146
17TAC47C	17	47	15	1	0.6	42	23	41	23	2.2	60	6 900	9 200	0.140
20TAC47C	20	47	15	1	0.6	42	25	41	25	2.2	60	6 900	9 200	0.135
25TAC62C	25	62	15	1	0.6	57	31	56	31	3.0	60	5 200	6 900	0.252
30TAC62C	30	62	15	1	0.6	57	36	56	36	3.2	60	4 900	6 400	0.224
35TAC72C	35	72	15	1	0.6	67	42	66	42	3.8	60	4 100	5 800	0.310
40TAC72C	40	72	15	1	0.6	67	47	66	47	3.9	60	4 100	5 500	0.275
40TAC90C	40	90	20	1	0.6	85	48	84	48	8.8	60	3 500	4 600	0.674
45TAC75C	45	75	15	1	0.6	68	54	67	54	4.2	60	3 700	4 900	0.270
45TAC100C	45	100	20	1	0.6	93	55	92	55	9.7	60	3 000	4 100	0.842
50TAC100C	50	100	20	1	0.6	92	60	91	60	10.2	60	3 000	3 900	0.778
55TAC100C	55	100	20	1	0.6	92	63	91	63	10.2	60	3 000	3 900	0.714
55TAC120C	55	120	20	1	0.6	112	63	111	63	12	60	2 500	3 500	1.23
60TAC120C	60	120	20	1	0.6	112	70	111	70	12	60	2 500	3 500	1.16

(Sealed Type)

Bearing Numbers ⁽¹⁾	В	lounda	ry Dim (mm)	nensior	าร	Abutme	ent and F (m	illet Dim m)	ensions	Contact	Limiting Speeds ⁽²⁾ (min ⁻¹)	Mass
	d	D	В	Г (Min.)	1'1 (Min.)	D _b (Max.)	da (Min.)	Da (Max.)	d₀ (Min.)	(degree)	Grease	(approx.)
* 15TAC47CDDG	15	47	15	1	0.6	42	19.5	41	19.5	60	6 900	0.146
* 17TAC47CDDG	17	47	15	1	0.6	42	22	41	22	60	6 900	0.140
* 20TAC47CDDG	20	47	15	1	0.6	42	25	41	25	60	6 900	0.135
* 25TAC62CDDG	25	62	15	1	0.6	57	30	56	30	60	5 200	0.252
30TAC62CDDG	30	62	15	1	0.6	57	36	56	36	60	4 900	0.224
35TAC72CDDG	35	72	15	1	0.6	67	41	66	41	60	4 100	0.310
40TAC72CDDG	40	72	15	1	0.6	67	46	66	46	60	4 100	0.275
40TAC90CDDG	40	90	20	1	0.6	85	47	84	47	60	3 500	0.674
45TAC100CDDG	45	100	20	1	0.6	93	54	92	54	60	3 000	0.842
50TAC100CDDG	50	100	20	1	0.6	92	59	91	59	60	3 000	0.778
55TAC100CDDG	55	100	20	1	0.6	92	63	91	63	60	3 000	0.714

Note: 1. An asterisk (*) indicates bearings that are also available as non-contact sealed bearings.

2. Limiting speeds are based on high preload (H). The values shown are valid for all types of bearing arrangement.

3. To calculate permissible axial load, multiply limiting axial load by 0.7.

Calculation of preload, axial rigidity and starting torque for bearing arrangements Multiply by factors in table B.

[able		DFD	DFF	DFT
в		QØØ	ØØØØ	ØØØØ
		DBD	DBB	DBT
		ØØQ	ØØØØ	ØØØQ
	Preload factor	1.36	2.00	1.57
	Axial rigidity	1.49	2.00	1.89
	Starting torque	1.35	2.00	1.55

Preload (DB a Arrangemen	and DF nt) (N)	Axial Rigidity (DB and DF Arrangement) (N/µm)	Basic dyna number o	mic load ra f rows sust	ting Ca by taining Fa	Limiting axial load by number of rows sustaining Fa ^G				
Н		н	Н	1 row (kN)	2 rows (kN)	3 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)	
1 450		630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
1 450		630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
1 450		630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
2 280		850	0.15	29.9	48.5	64.5	40.5	81.5	122	
2 400		890	0.16	30.5	50.0	66.0	43.0	86.0	129	
2 750		1 030	0.18	32.5	53.0	70.5	50.0	100	150	
2 860		1 080	0.19	33.5	54.0	72.0	52.0	104	157	
3 450		1 150	0.29	62.0	101	134	89.5	179	269	AG
3 100		1 170	0.20	34.5	56.0	74.5	57.0	114	170	ŝ
4 440		1 340	0.40	64.5	105	140	99.0	198	298	Sor
4 650		1 410	0.42	66.0	107	142	104	208	310	les
4 650		1 410	0.42	66.0	107	142	104	208	310	
5 450		1 660	0.49	70.5	115	153	123	246	370	
5 450		1 660	0.49	70.5	115	153	123	246	370	

Preload (DB and DF Arrangement) (N)	Axial Rigidity (DB and DF Arrangement) (N/µm)	Starting Torque (DB and DF Arrangement) ⁽⁴⁾ (N·m) (reference)	Basic dyna number o'	mic load ra f rows sust	ting Ca by aining Fa	Limiting axial load by number of rows sustaining Fa [®]			
Н	Н	Н	1 row (kN)	2 rows (kN)	3 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)	
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
2 280	850	0.15	29.9	48.5	64.5	40.5	81.5	122	
2 400	890	0.16	30.5	50.0	66.0	43.0	86.0	129	
2 750	1 030	0.18	32.5	53.0	70.5	50.0	100	150	
2 860	1 080	0.19	33.5	54.0	72.0	52.0	104	157	
3 450	1 150	0.29	62.0	101	134	89.5	179	269	
4 440	1 340	0.40	64.5	105	140	99.0	198	298	
4 650	1 410	0.42	66.0	107	142	104	208	310	
4 650	1 410	0.42	66.0	107	142	104	208	310	

4. The starting torque values in the table apply to grease lubricated bearings. Contact seal torque is not included. For oil lubricated bearings, multiply by 1.4.
5. Abutment and fillet dimensions are recommendable values for the use of standard Machine tool applications. For heavy load applications, please ask NSK

for High-Load Drive Applications

Bearing	Во	undar	y Din (mm)	nensio	ons	Refe	erence (m	Dimens m)	ions	Recommended Grease	Contact	Limiting : (mi	Speeds ⁽²⁾ n ⁻¹)	Mass
Numbers	d	D	В	r (Min.)	/ [*] 1 (Min.)	dı	d₂	Dı	D2	Quantities (cc/rovv)	angie (degree)	Grease	Oil	(Kg) (approx.)
15TAC02D	15	35	11	0.6	0.3	19.1	24.5	26	31.9	1	55	12 000	14 800	0.047
20TAC03D	20	52	15	1.1	0.6	27.2	35.3	37.5	46.1	2.7	55	8 300	10 300	0.155
25TAC02D	25	52	15	1	0.6	30.8	38.1	39.6	47.3	3	55	7 700	9 700	0.137
TAC35-3	35	90	23	1.5	1	50.4	64.2	67.1	81.7	14	55	4 600	6 000	0.712
40TAC03D	40	90	23	1.5	1	50.4	64.2	67.1	81.7	14	55	4 600	5 700	0.659
TAC40-3	40	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	5 000	1.28
45TAC03D	45	100	25	1.5	1	56.5	71.7	74.7	90.8	18	55	4 100	5 200	0.877
TAC45-3	45	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	4 800	1.21
50TAC03D	50	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	4 700	1.14
TAC50-3	50	130	31	2.1	1.1	73.9	93.8	98	119	40	55	3 100	4 200	2.00
55TAC03D	55	120	29	2	1	68	86.4	90.2	109.7	32	55	3 400	4 300	1.44
60TAC03D	60	130	31	2.1	1.1	73.9	93.8	98	119	40	55	3 100	3 900	1.80
TAC60-3	60	170	39	2.1	1.1	98.5	123.6	128.7	157.5	85	55	2 400	3 300	4.47
70TAC03D	70	150	35	2.1	1.1	86.3	108.6	113.4	137.8	59	55	2 700	3 400	2.67
75TAC03D	75	160	37	2.1	1.1	92.4	116.2	121	146.2	67	55	2 500	3 200	3.20
80TAC03D	80	170	39	2.1	1.1	98.5	123.6	128.7	157.5	85	55	2 400	3 000	3.80
TAC80-3	80	215	47	3	1.1	124	154.9	160.4	194.5	156	55	1 900	2 600	8.66
100TAC03D	100	215	47	3	1.1	124	154.9	160.4	194.5	156	55	1 900	2 400	7.54
TAC100-3	100	260	55	3	1.1	150.5	186.9	193.4	231.7	254	55	1 500	2 100	14.8
120TAC03D	120	260	55	3	1.1	150.5	186.9	193.4	231.7	254	55	1 500	2 000	13.3
* TAC120-3M	120	300	62	4	1.5	170.8	215.3	224.1	265.7	336	55	1 300	1 800	24.5
* 140TAC03DM	140	300	62	4	1.5	170.8	215.3	224.1	265.7	336	55	1 300	1 700	22.5
* TAC140-3M	140	340	68	4	1.5	197.5	246.2	254.3	298.8	442	55	1 200	1 600	34.5
* 160TAC03DM	160	340	68	4	1.5	197.5	246.2	254.3	298.8	442	55	1 200	1 500	32.0
* TAC160-3M	160	380	75	4	1.5	221.1	275.6	284.9	334.9	624	55	1 000	1 400	46.8
* 180TAC03DM	180	380	75	4	1.5	221.1	275.6	284.9	334.9	624	55	1 000	1 400	43.7

Note: 1. An asterisk (*) indicates bearings that are also available equipped with screw holes for mounting bolts. 2. Limiting speeds are based on the standard preload of each bearing. The values shown are valid for all types of bearing arrangement.

3. Preload values for bearings with a bore diameter of 100mm or more as well as for TAC80-3 are based on EL preload.

Ball screw support bearings NSKTAC 03 series

Multi-row combination calculations

Calculation of preload, axial rigidity and starting torque for bearing arrangements Multiply by factors in table B.

Table B

-									
Number of load-sustaining rows	2 rows			3 rows		4 r	5 rows		
	DFD DFF		DFT	DFFD	DFFF	DFTD	DFFT	DFTT	
	QØØ	ØØØØ	ØØØØ	ØØØØØ	ØØØØØØ	ØØØØØ	ØØØØØØ	ØØØØØØ	
	DBD DBB		DBT	DBBD	DBBB	DBTD	DBBT	DBTT	
	ØØQ	ØØØØ	ØØØQ	ØØØØQ	ØØØØØØ	ØØØØQ	ØØØØØQ	ØØØØØQ	
Preload factor	1.36	2.00	1.57	2.42	3.00	1.72	2.72	1.83	
Axial rigidity	1.49 2.00		1.89	2.51	3.00	2.24	2.97	2.57	
Starting torque	1.35	2.00	1.55	2.41	3.00	1.68	2.71	1.77	

	Axial Rigidity	Starting Torque	Ba	sic dynar umber of	nic load rows su	rating Ca staining	by Fa	Limiting axial load by number of rows sustaining Fa ⁽⁵⁾					
Arrangement)	Arrangement)	Arrangement)	1 1 1 1	2 10140	2 10110	4 10040	E rouxo	1 1 1 1	2 1010	2 10110	4 10140	E rouvo	-
(N)	(N/um)	(N·m)	(FVI)	210W5 (KNI)	(KNI)	(FVI)	(1/2010		210WS	(KNI)	410005 (ENI)	(FVI)	
400	(,,	0.017											
400	290	0.017	21.0	34.0	45.0	55.5	64.5	18.6	37.5	56.0	/4.5	93.0	
830	430	0.026	42.5	69.5	92.0	113	132	38.5	77.0	116	154	193	
690	430	0.036	37.0	60.0	/9.5	97.5	114	36.0	/2.5	109	145	181	
2 500	780	0.26	113	184	244	299	350	118	235	355	470	590	
2 500	/80	0.26	113	184	244	299	350	118	235	355	470	590	-
3 900	970	0.50	166	270	360	440	515	181	360	540	720	905	
2 800	830	0.31	133	216	287	350	410	142	283	425	565	/10	-
3 900	970	0.50	166	270	360	440	515	181	360	540	720	905	
3 900	970	0.50	166	270	360	440	515	181	360	540	/20	905	ġ
5 200	1 1 2 0	0.78	218	355	470	575	670	242	485	725	965	1 210	8
4 280	1 060	0.68	190	310	410	500	585	210	420	630	840	1 050	ğ
5 200	1 1 2 0	0.78	218	355	470	575	670	242	485	725	965	1 210	8
8 050	1 400	1.5	305	495	660	805	940	390	775	1 170	1 550	1 940	
6 400	1 250	1.1	262	425	565	690	810	305	615	920	1 230	1 530	
7 230	1 330	1.3	283	460	610	750	875	345	690	1 040	1 380	1 730	
8 050	1 400	1.5	305	495	660	805	940	390	775	1 170	1 550	1 940	
1 240	880	0.15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550	
1 240	880	0.15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550	
1 620	1 050	0.21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400	
1 620	1 050	0.21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400	_
1 710	1 130	0.24	640	1 040	1 380	1 680	1 970	794	1 590	2 380	3 200	3 950	
1 710	1 130	0.24	640	1 040	1 380	1 680	1 970	794	1 590	2 380	3 200	3 950	_
1 850	1 240	0.27	725	1 180	1 570	1 920	2 240	1 040	2 080	3 100	4 150	5 200	
1 850	1 240	0.27	725	1 180	1 570	1 920	2 240	1 040	2 080	3 100	4 150	5 200	_
1 940	1 310	0.30	815	1 330	1 760	2 150	2 520	1 360	2 720	4 100	5 450	6 800	
1 940	1 310	0.30	815	1 330	1 760	2 150	2 520	1 360	2 720	4 100	5 450	6 800	

The starting torque values in the table apply to grease lubrication.
 To calculate permissible axial load, multiply limiting axial load by 0.7.

NSK